How to rest for body recomposition


How to rest for body recomposition

Rest days are the recovery periods between training sessions when the physiological processes that build muscle and adapt to exercise occur. This article explains the role of rest and recovery in body recomposition and how they support muscle repair and long-term progress.

This article is from the Bodyweight section of our Library.

This article is part of a four-part series on body recomposition — the process of losing fat while maintaining or building muscle.

Articles in this series:

  1. Article 1: What Is Body Recomposition?
  2. Article 2: Training for Body Recomposition
  3. Article 3: Nutrition for Body Recomposition
  4. Article 4: Rest and Recovery for Body Recomposition

Across the series, we cover what recomposition is and how it comes about, the role of resistance training, nutrition, and rest. Each article builds on the previous one to provide a complete overview, so please read away!



Even if training and nutrition are optimised, most of the actual changes occur during the recovery period, not during the training session itself. Resistance training doesn't build muscle directly — it damages and disrupts muscle tissue whilst triggering signals for adaptation. 

The actual construction of new muscle protein occurs during the hours and days following training, when your body is resting. So, insufficient rest and recovery between training sessions can hamper the adaptive response to training, your performance (and thus muscle growth).

For body recomposition, recovery is particularly important as you're attempting to build muscle in a suboptimal environment (because you are energy-restricted). So, maximising the quality and efficiency of recovery periods becomes even more important when energy availability is limited.

Does sleep help muscle growth?

Sleep represents the longest uninterrupted recovery period of your day. There is no other opportunity where you get 6–8 hours of complete and consecutive rest. Research consistently demonstrates that good sleep is important for muscle growth

During sleep, particularly deep sleep, growth hormone peaks, creating a hormonal environment that favours growth. 

Multiple studies have shown that protein consumed before sleep is effectively digested and absorbed, and can stimulate muscle growth processes throughout the night.

Sleep deprivation impairs muscle growth processes, even when you’re training and consuming enough protein.

It appears that sleep deprivation alters some of your hormones (like testosterone, cortisol and insulin-like growth factor 1) — which shifts your body towards breaking down muscle, rather than growing it.

Practically, this means that sleep restriction, which means consistently having less than seven hours per night, will impair body recomposition efforts. So, sleep quality and duration should be considered alongside training and nutrition.

Does sleep help fat loss?

Another “double-effect”. In addition to blunting muscle growth, sleep can also derail fat loss. 

Sleep restriction alters your appetite hormones, making you hungrier and more difficult to adhere to calorie-restricted diets. Even just a single night of bad sleep can increase hunger. Over multiple days, these effects can compound, creating a physiological drive to consume more food.

More bad news. Sleep deprivation appears to increase preferences for calorie-dense fatty, sugary and salty foods. This isn’t a failure of willpower; it's how your brain responds to food cues. 

For body recomposition, which requires maintaining a moderate energy deficit consistently over weeks or months, poor sleep creates a dual problem: it simultaneously impairs the muscle-growth response to training and makes dietary adherence more difficult. 

Both effects undermine the goal of improving your body composition.

Practically, prioritising seven to nine hours of quality sleep per night is essential. This includes not just total sleep duration but also sleep consistency (regular bedtimes and wake times) and sleep quality (minimising interruptions). 

Treating sleep as a negotiable variable or something to sacrifice will be counterproductive to body recomposition goals.

Stress, Hormones, and Energy

Stress, be it psychological or physical, can also affect body recomposition, as it stimulates the release of certain hormones, like cortisol

Cortisol affects muscle in a few different ways. First, it increases muscle breakdown while also suppressing growth processes. 

Second, it blunts the effects of another hormone, insulin, which helps support muscle growth. Even with adequate protein intake, chronically elevated cortisol can impair muscle growth. 

Lastly, another double-effect, cortisol influences “energy partitioning”, increasing fat storage, particularly visceral fat, while blunting muscle growth. 

This is thought to happen as cortisol acts as a signal that, because of stress, energy needs to be conserved (to deal with the stress), and muscle is a nonessential luxury. 

While this might be a perfectly healthy evolutionary response to stress, it will directly undermine body recomposition efforts.

In addition to everyday psychological stressors (like work, relationships, and financial worries), specific recomposition requirements like muscle soreness from training, hunger from energy deficits, and planning to meet nutritional targets can add extra stress. 

So you’re best keeping all forms of stress to a minimum.



Stress, Recovery, and Recomposition

When training stress exceeds your ability to recover, your performance will decline, and the adaptive response to training will be impaired.

“Overtraining” or “Under-Recovery” manifests itself in a few ways: muscle soreness, weakness, mood changes, poor sleep or increased susceptibility to illness. 

One or more of these symptoms typically indicate that something isn’t working quite right under the hood. Poor recovery may not just pause, slow or impair progress — it may actually reverse it.

The practical implication is clear: more training is not always better, especially if you’re on an energy-restricted diet. 

There is an optimal dose of training stimulus that maximises adaptation without exceeding recovery capacity. Exceeding this dose, even with the best intentions, may undermine results.

Consistency Beats Intensity

Body recomposition is inherently a moderate, sustained process rather than a rapid, magical transformation. The limited availability of energy, extra stress and some hormonal changes favour consistency and moderation over crash diets and German volume training.

The person who achieves perfect adherence for two weeks before giving up will be worse off than the person who hits their targets 80% of the time but keeps it going for three months. 

And because many of these things that we’ve discussed interact with each other, you cannot optimise one thing (training) while ignoring other things (sleep, nutrition, recovery, etc). 

It is also extremely difficult to offset one thing by increasing the other: for example, increasing the amount of training you are doing to counteract a bad diet.

Practical Considerations

There are some solid rest and recovery options that you can consider adding to your body composition plan. First, sleep should be treated as non-negotiable, with seven to nine hours per night as a baseline target. 

Sleep quality matters: maintaining consistent bed and wake times, creating a dark and cool sleep environment, and minimising screen exposure before bed all support better sleep “architecture”.

Second, stress management: this might include formal practices such as meditation or breathing exercises, but can also involve more prosaic interventions like setting boundaries around work hours, scheduling downtime, socialising, or engaging in enjoyable activities that are not related to fitness goals. 

Third, training should include planned rest days and deliberate variation in intensity rather than attempting maximal effort in every session. 

Not every workout needs to be exhausting to be productive. Lower-intensity sessions, deload weeks with reduced volume, and adequate rest days all support sustained progress better than relentless intensity.

Fourth, monitoring for signs of under-recovery: persistent fatigue, declining performance, mood changes, disrupted sleep, or unusual muscle soreness. 

This allows for early intervention before minor under-recovery becomes full-blown overtraining. Addressing these signs by temporarily reducing training volume or increasing energy intake prevents setbacks.



Body Recomposition: An Overview

Body recomposition emerges from the alignment of three distinct but interacting systems. First, resistance training provides the mechanical signal that tells your body that its muscle tissue needs to be maintained or expanded despite a lack of available energy. 

This signal must be sufficient in intensity and frequency to drive adaptation, but not so excessive that it overwhelms recovery.

Second, protein and energy availability provide the materials and the conditions necessary for adaptation. Adequate protein supplies the building blocks to make muscle. A moderate energy deficit ensures fat burning without creating unnecessary stress that impairs muscle growth. 

Third, recovery — defined primarily by sleep quality, stress levels, and adequate rest between training sessions. It determines whether the training and nutrition actually translate into meaningful and measurable adaptation. 

Without sufficient recovery, training becomes a source of stress rather than a progressive stimulus, where resources are directed toward managing the stress rather than building tissue.

For effective body recomposition, these three elements must be aligned and optimised. Excellent training with inadequate protein yields limited muscle growth. 

Adequate protein and training with insufficient recovery produce fatigue rather than adaptation. Sufficient recovery without an adequate training stimulus fails to stimulate growth.

Moreover, the relationship is dynamic rather than static. As body composition improves, training may need adjustment to provide continued stimulus. As energy deficit is sustained, recovery needs may increase. 

As life stressors fluctuate, training volume or the size of the energy deficit may need to be modified. Successful body recomposition involves ongoing adjustment based on response, not rigid, unwavering plans. 

The evidence is clear: body recomposition is possible for many people, specifically for those who are new to training or carrying a lot of body fat. However, there are constraints. 

Those who successfully achieve meaningful body recomposition will share common characteristics. 

They train consistently with appropriate intensity, they eat adequate amounts of protein with moderate energy deficits, they prioritise sleep, recovery and manage stress well, and most importantly, they can sustain these practices for months rather than weeks. 

3 Quick Questions

Q: How much sleep do I actually need for optimal body recomposition?

Most research suggests seven to nine hours of quality sleep per night supports optimal recovery and adaptation. Individual needs vary, but consistently obtaining less than seven hours appears to impair recomposition efforts. 

Sleep quality matters as well; interrupted or poor-quality sleep may require longer total duration to achieve adequate recovery. 

Q: I'm extremely busy and stressed with work. Should I wait until life calms down to attempt body recomposition?

Not necessarily, but you may need to adjust your approach. If life stress is high, consider a smaller energy deficit, slightly lower training volume, and extremely diligent sleep habits. 

For some people, structured exercise and nutrition can actually help manage stress better. Do an honest assessment about whether it feels sustainable or not. 

Q: How do I know if I'm under-recovering versus just experiencing normal training fatigue?

Normal training fatigue should disappear with one to two rest days and shouldn't noticeably impair your performance. 

Signs of overtraining include: weakness, poor exercise performance, muscle soreness that doesn’t get better with rest, bad mood, poor sleep, or reduced motivation for training. 

If these persist for more than a few days, despite adequate rest, consider reducing training volume or increasing your energy intake temporarily until symptoms are resolved.



Disclaimer: No content on this site, regardless of date, should ever be used as a substitute for direct medical advice from your doctor or other qualified clinician.